Основы программирования

Деревья и графы


Граф — это фигура, которая состоит из вершин и ребер, соединяющих вершины. Например, схема линий метро — это граф. Ребра могут иметь направления, т.е. изображаться стрелочками; такие графы называются ориентированными. Допустим, надо построить схему автомобильного движения по улицам города. Почти во всех городах есть много улиц с односторонним движением. Поэтому такая транспортная схема должна представляться ориентированным графом. Улице с односторонним движением соответствует стрелка, с двусторонним — пара стрелок в противоположных направлениях. Вершины такого графа соответствуют перекресткам и тупикам.

Дерево — это связный граф без циклов. Кроме того, в дереве выделена одна вершина, которая называется корнем дерева. Остальные вершины упорядочиваются по длине пути от корня дерева.


Зафиксируем некоторую вершину X. Вершины, соединенные с X ребрами и расположенные дальше нее от корня дерева, называются детьми или сыновьями вершины X. Сыновья упорядочены слева направо. Вершины, у которых нет сыновей, называются терминальными. Дерево обычно изображают перевернутым, корнем вверх. .

Деревья в программировании используются значительно чаще, чем графы. Так, на построении деревьев основаны многие алгоритмы сортировки и поиска. Компиляторы в процессе перевода программы с языка высокого уровня на машинный язык представляют фрагменты программы в виде деревьев, которые называются синтаксическими. Деревья естественно применять всюду, где имеются какие-либо иерархические структуры, т.е. структуры, которые могут вкладываться друг в друга. Примером может служить оглавление книги


Пусть книга состоит из частей, части — из глав, главы — из параграфов. Сама книга представляется корнем дерева, из которого выходят ребра к вершинам, соответствующим частям книги. В свою очередь, из каждой вершины-части книги выходят ребра к вершинам-главам, входящим в эту часть, и так далее. Файловую систему компьютера также можно представить в виде дерева. Вершинам соответствуют каталоги (их также называют директориями или папками) и файлы.
Из вершины-каталога выходят ребра к вершинам, соответствующим всем каталогам и файлам, которые содержатся в данном каталоге. Файлы представляются терминальными вершинами дерева. Корню дерева соответствует корневой каталог диска. Программы, осуществляющие работу с файлами, такие, как Norton Commander в системе MS DOS или Проводник Windows, могут изображать файловую систему графически в виде дерева.

Ссылочные реализации как будто специально придуманы для реализации деревьев. Вершина дерева представляется в виде объекта, содержащего ссылки на родительскую вершину и на всех сыновей, а также некоторую дополнительную информацию, зависящую от конкретной задачи. Объект, представляющий вершину дерева, занимает область фиксированного размера, которая обычно размещается в динамической памяти. Число сыновей обычно ограничено, исходя из смысла решаемой задачи. Так, очень часто рассматриваются бинарные деревья, в которых число сыновей у произвольной вершины не превышает двух. Если один или несколько сыновей у вершины отсутствуют, то соответствующие ссылки содержат нулевые значения. Таким образом, у терминальных вершин все ссылки на сыновей нулевые.

При работе с деревьями очень часто используются рекурсивные алгоритмы, т.е. алгоритмы, которые могут вызывать сами себя. При вызове алгоритма ему передается в качестве параметра ссылка на вершину дерева, которая рассматривается как корень поддерева, растущего из этой вершины. Если вершина терминальная, т.е. у нее нет сыновей, то алгоритм просто применяется к данной вершине. Если же у вершины есть сыновья, то он рекурсивно вызывается также для каждого из сыновей. Порядок обхода поддеревьев зависит от сути алгоритма. В главе, посвященной языку Си, уже был рассмотрен простейший рекурсивный алгоритм, подсчитывающий число терминальных вершин бинарного дерева.

Ниже приведен еще один рекурсивный алгоритм, определяющий высоту дерева. Высотой дерева называется максимальная из длин всевозможных путей от корня дерева к терминальным вершинам. Под длиной пути понимается число вершин, входящих в него, включая первую и последнюю вершины.Так, дерево, состоящее из одной корневой вершины, имеет высоту 1, дерево, приведенное на рисунке в начале этого раздела — высоту 4.

цел алгоритм высота_дерева(вход: вершина V) | Дано: V - ссылка на корень поддерева | Надо: Подсчитать высоту поддерева начало | цел h, m, s; | h := 1; | если у вершины V есть сыновья | | то // Ищем поддерево максимальной высоты | | m := 0; | | цикл для каждого сына X вершины V выполнить | | | s := высота_дерева(X); // Рекурсия! | | | если s > m | | | | то m := s; | | | конец если | | конец цикла | | h := h + m; | конец если | ответ := h; конец алгоритма


Содержание раздела